Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Heliyon ; 10(6): e27862, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560684

RESUMO

All over the world, the level of special air pollutants that have the potential to cause diseases is increasing. Although the relationship between exposure to air pollutants and mortality has been proven, the health risk assessment and prediction of these pollutants have a therapeutic role in protecting public health, and need more research. The purpose of this research is to evaluate the ill-health caused by PM2.5 pollution using AirQ + software and to evaluate the different effects on PM2.5 with time series linear modeling by R software version 4.1.3 in the cities of Arak, Esfahan, Ahvaz, Tabriz, Shiraz, Karaj and Mashhad during 2019-2020. The pollutant hours, meteorology, population and mortality information were calculated by the Environmental Protection Organization, Meteorological Organization, Statistics Organization and Statistics and Information Technology Center of the Ministry of Health, Treatment and Medical Education for 24 h of PM2.5 pollution with Excel software. In addition, having 24 h of PM2.5 pollutants and meteorology is used to the effect of variables on PM2.5 concentration. The results showed that the highest and lowest number of deaths due to natural deaths, ischemic heart disease (IHD), lung cancer (LC), chronic obstructive pulmonary disease (COPD), acute lower respiratory infection (ALRI) and stroke in The effect of disease with PM2.5 pollutant in Ahvaz and Arak cities was 7.39-12.32%, 14.6-17.29%, 16.48-8.39%, 10.43-18.91%, 12.21-22.79% and 14.6-18.54 % respectively. Another result of this research was the high mortality of the disease compared to the mortality of the nose. The analysis of the results showed that by reducing the pollutants in the cities of Karaj and Shiraz, there is a significant reduction in mortality and linear modeling provides a suitable method for air management planning.

2.
Sci Rep ; 14(1): 1083, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212370

RESUMO

Styrene is a volatile organic compound with various applications, especially in the plastics and paint industries. Exposure to it leads to symptoms such as weakness, suppression of the central nervous system, and nausea, and prolonged exposure to it increases the risk of cancer. Its removal from the air is a topic that researchers have considered. Various methods such as absorption, membrane separation, thermal and catalytic oxidation, biofiltration have been used to remove these compounds. The disadvantages of these compounds include the need for high energy, production of secondary pollutants, large space, providing environmental conditions (temperature and humidity) and long time. The photocatalyst process is considered as an advanced process due to the production of low and safe secondary pollutants. MOFs are nanoparticles with unique photocatalytic properties that convert organic pollutants into water and carbon dioxide under light irradiation and in environmental conditions, which prevent the production of secondary pollutants. The present study aimed to investigate the efficiency of MIL100 (Fe) nanoparticles coated on glass in removing styrene vapor from the air. Surface morphology, crystal structure, pore size, functional groups, and chemical composition of the catalyst were analyzed by SEM, XRD, BET, FTIR, and EDX analysis. The effect of parameters such as initial pollutant concentration, temperature, time, relative humidity, and nanoparticle concentration was evaluated as effective parameters in the removal process. Based on the results, MIL100 (Fe) 0.6 g/l with an 89% removal rate had the best performance for styrene removal. Due to its optimal removal efficiency, it can be used to degrade other air pollutants.

3.
Environ Geochem Health ; 46(1): 20, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153542

RESUMO

According to epidemiological studies, particulate matter (PM) is an important air pollutant that poses a significant threat to human health. The relationship between particulate matter and respiratory diseases has been the subject of numerous studies, but these studies have produced inconsistent findings. The purpose of this systematic review was to examine the connection between outdoor particulate matter (PM2.5 and PM10) exposure and respiratory disorders (COPD, lung cancer, LRIs, and COVID-19). For this purpose, we conducted a literature search between 2012 and 2022 in PubMed, Web of Science, and Scopus. Out of the 58 studies that were part of the systematic review, meta-analyses were conducted on 53 of them. A random effect model was applied separately for each category of study design to assess the pooled association between exposure to PM2.5 and PM10 and respiratory diseases. Based on time-series and cohort studies, which are the priorities of the strength of evidence, a significant relationship between the risk of respiratory diseases (COPD, lung cancer, and COVID-19) was observed (COPD: pooled HR = 1.032, 95% CI: 1.004-1.061; lung cancer: pooled HR = 1.017, 95% CI: 1.015-1.020; and COVID-19: pooled RR = 1.004, 95% CI: 1.002-1.006 per 1 µg/m3 increase in PM2.5). Also, a significant relationship was observed between PM10 and respiratory diseases (COPD, LRIs, and COVID-19) based on time-series and cohort studies. Although the number of studies in this field is limited, which requires more investigations, it can be concluded that outdoor particulate matter can increase the risk of respiratory diseases.


Assuntos
COVID-19 , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Material Particulado/toxicidade , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/epidemiologia , COVID-19/epidemiologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/epidemiologia
4.
Sci Rep ; 13(1): 17858, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857811

RESUMO

Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 µg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 µg/m3) and in the industrial area this parameter was (191.6 and 158.3 µg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 µg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Estações do Ano , Oriente Médio , Medição de Risco , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , China
5.
Sci Rep ; 13(1): 16185, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758793

RESUMO

Antibiotics are resistant compounds with low biological degradation that generally cannot be removed by conventional wastewater treatment processes. The use of yolk-shell nanostructures in spinning disc photocatalytic reactor (SDPR) enhances the removal efficiency due to their high surface-to-volume ratio and increased interaction between catalyst particles and reactants. The purpose of this study is to investigate the SDPR equipped to Fe3O4@void@CuO/ZnO yolk-shell thin film nanostructure (FCZ YS) in the presence of visible light illumination in the photocatalytic degradation of amoxicillin (AMX) from aqueous solutions. Stober, co-precipitation, and self-transformation methods were used for the synthesis of FCZ YS thin film nanostructure and the physical and chemical characteristics of the catalyst were analyzed by XRD, VSM,, EDX, FESEM, TEM, AFM, BET, contact angle (CA), and DRS. Then, the effect of different parameters including pH (3-11), initial concentration of AMX (10-50 mg/L), flow rate (10-25 mL/s) and rotational speed (100-400 rpm) at different times in the photocatalytic degradation of AMX were studied. The obtained results indicated that the highest degradation efficiency of 97.6% and constant reaction rate of AMX were obtained under LED visible light illumination and optimal conditions of pH = 5, initial AMX concentration of 30 mg/L, solution flow rate of 15 mL/s, rotational speed of 300 rpm and illumination time of 80 min. The durability and reusability of the nanostructure were tested, that after 5 runs had a suitable degradation rate. Considering the appropriate efficiency of amoxicillin degradation by FCZ YS nanostructure, the use of Fe3O4@void@CuO/ZnO thin film in SDPR is suggested in water and wastewater treatment processes.

6.
Ecotoxicol Environ Saf ; 263: 115229, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441953

RESUMO

Cantaloupe is a popular agricultural product in the hot season of Iran. On the other hand, the frequent use of pesticides in cantaloupe fields is the most important threat to the health of farmers and consumers. Therefore, the present study aims to measure the concentration of diazinon (DZN), chlorpyrifos (CPF), and malathion (MLT) in cantaloupe cultivated in Kashan and Aran-Bidgol (Iran) and to estimate the possible oral and dermal risk of these pesticides by Monte Carlo simulation (MCS). 36 cantaloupe samples, 18 samples before, and 18 samples after the latent period were collected from different places of cantaloupe cultivation from April to May 2021. After measuring the pesticides using the QuEChERS approach, oral and dermal risk assessments were calculated.The mean and standard deviation of the concentrations of chlorpyrifos, malathion, and diazinon in 18 cantaloupe samples, after the latent period, were (30.39 ± 13.85), (18.361 ± 1.8), and (21.97 ± 0.86) µg kg-1, respectively. Concentration of Malathion, diazinon, and Chlorpyrifos in the soil were 0.22, 0.25, and 0.3 mg kg-1, respectively, and pesticide cumulative risk assessment in soil was obtained 0.011 for Malathion, 0.05 for diazinon and 0.03 for Chlorpyrifos. Target Hazard Quotient (THQ) according to the cantaloupe consumption and dermal exposure in children and adults, was safe range. Although non-cancerous dermal and oral risk of cantaloupe is low, constant exposure can be harmful. Therefore, the findings of this study play an important role in increasing the understanding of the negative health consequences of pesticide contamination in cantaloupe for consumers, especially local residents, and can help by adopting remedial strategies to reduce environmental concerns.


Assuntos
Clorpirifos , Cucumis melo , Resíduos de Praguicidas , Praguicidas , Adulto , Criança , Humanos , Resíduos de Praguicidas/análise , Clorpirifos/análise , Diazinon , Malation , Solo , Irã (Geográfico) , Método de Monte Carlo , Praguicidas/análise , Medição de Risco
7.
Heliyon ; 9(6): e17357, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383194

RESUMO

Shahryar city regions with various land uses had their outdoor air concentrations of PM2.5-bound PAHs determined. Totally, 32 samples were taken - eight samples from the industrial region air (IS), eight samples from the high-traffic urban regions air (HTS), eight samples from the air of commercial regions (CS), and eight samples from residential areas (RS), which were analyzed by GC-MS. According to the study's findings, in the outdoor air of IS, HTS, CS, and RS, there were mean Æ©PAHs concentrations of 23.25 ± 20.22, 38.88 ± 26.53, 6.97 ± 4.26, and 4.48 ± 3.13 ng/m3, respectively. As comparison to CS and RS, mean concentration of Æ©PAHs in samples from HTS and IS was substantially greater (p < 0.05). Using the Unmix.6 receptor model, sources of PAHs in the air of Shahryar were allocated. The model's results show that 42% of PAHs come from diesel vehicles and industrial activities, 36% from traffic and other transportation sources, and 22% from heating sources and coal burning. The carcinogenicity suffering resulting from exposure to PAHs was as follows: This value for children of the ingestion, inhalation pathways and dermal contact is (1.90 × 10-6-1.38 × 10-4), (5.5 × 10-11-2.67 × 10-9) and (2.36 × 10-6-1.72 × 10-4), respectively. Also, for adults were (1.47 × 10-6 - 1.07 × 10-4), (1.14 × 10-10 - 5.27 × 10-9) and (3.68 × 10-6- 2.87 × 10-4), respectively. In general, the analyzed region's carcinogenicity risk estimates fell within the range of acceptable limit.

8.
Sci Rep ; 13(1): 4000, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899090

RESUMO

In this study, toluene and ethylbenzene were degraded in the photocatalytic-proxone process using BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite. The simultaneous presence of ozone and hydrogen peroxide is known as the proxone process. Nanocomposite Synthesis was carried out using the solvothermal method. Inlet airflow, ozone concentrations, H2O2 concentrations, relative humidity, and initial pollutants concentrations were studied. The nanocomposite was successfully synthesized based on FT-IR, BET, XRD, FESEM, EDS element mapping, UV-Vis spectra and TEM analysis. A flow rate of 0.1 L min-1, 0.3 mg min-1 of ozone, 150 ppm of hydrogen peroxide, 45% relative humidity, and 50 ppmv of pollutants were found to be optimal operating conditions. Both pollutants were degraded in excess of 95% under these conditions. For toluene and ethylbenzene, the synergistic of mechanisms effect coefficients were 1.56 and 1.76, respectively. It remained above 95% efficiency 7 times in the hybrid process and had good stability. Photocatalytic-proxone processes were evaluated for stability over 180 min. The remaining ozone levels in the process was insignificant (0.01 mg min-1). The CO2 and CO production in the photocatalytic-proxone process were 58.4, 5.7 ppm for toluene and 53.7, and 5.5 ppm for ethylbenzene respectively. Oxygen gas promoted and nitrogen gas had an inhibitory effect on the effective removal of pollutants. During the pollutants oxidation, various organic intermediates were identified.

9.
J Environ Health Sci Eng ; 20(2): 937-952, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36406604

RESUMO

One of the popular process in volatile organic compounds removal in gas phase is advanced oxidation process. We in this research, synthesized BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite as a novel nanocomposite to degradation of benzene in hybrid advanced oxidation process. The nanocomposite synthesized via solvothermal method. The effect of airflow, ozone gas concentration, hydrogen peroxide concentration, relative humidity and initial benzene concentration are the main parameters in the UV/O3/H2O2/ nanocomposite hybrid process that were studied. The characterization by XRD, FT-IR, FESEM, EDS element mapping, TEM, BET, and UV-vis spectra indicated that nanocomposite were well synthesized. Optimal operating conditions of the process were determined at air flow of 0.1 l/min, ozone concentration of 0.3 mg/min, hydrogen peroxide concentration of 150 ppm, relative humidity of 45 ± 3% and benzene concentration of 50 ppmv. Under these conditions, more than 99% of benzene was degraded. The synergistic effect coefficient of the mechanisms is 1.53. The nanocomposite had good stability in the hybrid process and remained above 99% efficiency up to 5 times. The ozone concentration residual the system was reported to be negligible (0.013 mg/min). The CO and CO2 emissions in the hybrid process was higher than other processes, which indicates better mineralization in the hybrid process. Formaldehyde, octane, noonan, phenol, decanoic acid were reported as the main by-products. The results indicated that UV/O3/H2O2/ nanocomposite hybrid process has fantastic efficiency in the degradation of benzene as one of the indicators of VOCs.

10.
J Environ Health Sci Eng ; 20(1): 589-598, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35669814

RESUMO

Cosmetic products, especially perfumes and colognes, are widely used in various communities. However, the use of these products can have side effects on consumers. This article aims to review the relevant literature published up to August 2020 to determine whether perfumes and colognes can affect people's health. Relevant articles were identified through electronic search. A total of 562 articles were selected and finally 37 related articles were included in the study after the screening process. The results of this systematic study showed that phthalates, aldehydes, parabens and aluminum-based salts are the most important contaminants in aromatic products that cause side effects such as allergies, breast cancer, reproductive disorders, especially in males, skin allergies, nervous system damage and migraine headaches for consumers. The incidence of complications in people using these products depends on parameters such as age, gender, race, amount of substance consumed, duration of use and economic status, and regarding the relationship between diseases such as cancer, respiratory disorders and endocrine with common contaminants in aromatic products, incidence of these diseases is probable in consumers which require further research to prove.

11.
Environ Sci Pollut Res Int ; 29(39): 59263-59286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35384534

RESUMO

Exposure to air pollution during prenatal or neonatal periods is associated with autism spectrum disorder (ASD) according to epidemiology studies. Furthermore, prenatal exposure to valproic acid (VPA) has also been found to be associated with an increased prevalence of ASD. To assess the association between simultaneous exposure to VPA and air pollutants, seven exposure groups of rats were included in current study (PM2.5 and gaseous pollutants exposed - high dose of VPA (PGE-high); PM2.5 and gaseous pollutants exposed - low dose of VPA (PGE-low); gaseous pollutants only exposed - high dose of VPA (GE-high); gaseous pollutants only exposed - low dose of VPA (GE-low); clean air exposed - high dose of VPA (CAE-high); clean air exposed - low dose of VPA (CAE-low) and clean air exposed (CAE)). The pollution-exposed rats were exposed to air pollutants from embryonic day (E0) to postnatal day 42 (PND42). In all the induced groups, decreased oxidative stress biomarkers, decreased oxytocin receptor (OXTR) levels, and increased the expression of interleukin 6 (IL-6), interleukin 1ß (IL-1ß), and tumor necrosis factor alpha (TNF-α) were found. The volumes of the cerebellum, hippocampus, striatum, and prefrontal decreased in all induced groups in comparison to CAE. Additionally, increased numerical density of glial cells and decreased of numerical density of neurons were found in all induced groups. Results show that simultaneous exposure to air pollution and VPA can cause ASD-related behavioral deficits and air pollution reinforced the mechanism of inducing ASD ̉s in VPA-induced rat model of autism.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Gravidez , Ratos , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno Autístico/induzido quimicamente , Comportamento Animal , Modelos Animais de Doenças , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Comportamento Social , Ácido Valproico/toxicidade
12.
Environ Sci Pollut Res Int ; 29(2): 2172-2182, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363174

RESUMO

Fine particles (especially PM2.5 particles) in ambient air can cause irreversible effects on human health. In the present study, seasonal variations in toxicity PM2.5 (cell viability and release of pro-inflammatory cytokines) were exposed human lung cells (A549) to concentrations of PM2.5 samples in summer (sPM2.5) and winter (wPM2.5) seasons. Cells were separately exposed to three concentrations of PM2.5 (25, 50, and 100 µg/mL) and three times (12 h, 1 and 2 days). We evaluated cell viability by MTT assay [3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide] and liberation of pro-inflammatory cytokines (interleukin-6 and interleukin-8) by the ELISA method. The toxicological results of this study showed that increasing the concentration of PM2.5 particulates and contact time with it reduces cell viability and increases inflammatory responses. Seasonal cytotoxicity of PM2.5 particles in high-traffic areas at summer season compared to winter season was lower. The lowest percent of viability at 2 days of exposure and 100 µg/mL exposure in the winter sample was observed. Also, PM2.5 particles were influential in the amount of interleukins 8 and 6. The average release level of IL-6 and IL-8 in the cold season (winter) and the enormous exposure time and concentrations (2 days-100 µg/mL) was much higher than in the hot season (summer). These values were twice as high for winter PM2.5 samples as for summer samples. The compounds in PM2.5 at different seasons can cause some biological effects. The samples' chemical characteristics in two seasons displayed that the PMs were diverse in chemical properties. In general, heavy metals and polycyclic aromatic hydrocarbons were more in the winter samples. However, the samples of wPM2.5 had a lower mass quota of metals such as aluminum, iron, copper, zinc, and magnesium. Concentrations of chromium, cadmium, arsenic, mercury, nickel, and lead were more significant in the sample of wPM2.5.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Biomarcadores , Cidades , Monitoramento Ambiental , Células Epiteliais , Humanos , Inflamação/induzido quimicamente , Material Particulado/análise , Estações do Ano
13.
J Environ Health Sci Eng ; 19(2): 1701-1712, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900299

RESUMO

Laboratory and epidemiological researches have indicated that ambient air particulate matter have a plays critical role in causing diseases. The current research evaluated the chemical attributes of PM2.5 in the ambient air of the cities of Karaj and Fardis and determined its toxicological effects on human lung epithelial cells (A549). In the study city, 16 points were selected from the two high-traffic and low-traffic points for sampling. A sampling of ambient air was carried out in spring, summer, autumn, and winter 2018-19. Air sampling was performed for 24 h according to the EPA-TO/13A guidelines. To analyze of toxic metals and polycyclic aromatic hydrocarbons (PAHs), ICP-OES and GC-MS were used, respectively, and for cell toxicity analysis, an ELISA reader was used. Then from SPSS, Excel and R software were used for statistical analysis. The results of the current study indicated that the concentration of PAHs carcinogenic in the autumn season in high-traffic stations was the highest and equal to 9.3 ng/m3, and in the spring season in the low-traffic stations, it was the lowest and equal to 5.82 ng/m3. In general, during the period of study, Heavy metals including Zn, Fe, Pb, Cu, and Al had the highest concentration compared to other metals. However, Hg, Cr, As, Pb, Cu, Cd, and Zn were higher concentration in the winter and autumn seasons than in the spring and summer seasons. Cell viability measurements by using MTT showed that low-traffic and high-traffic stations had the highest toxicity in autumn season compared to other seasons. (p < 0.05). In general, high-traffic stations had the highest toxicity than low-traffic stations. The general conclusion of the present study was that PM2.5-bound PAHs and toxic metals, due to their high concentration, were toxic pollutants in air for residents of Karaj and Fardis. Also, the high concentration of PM2.5 caused the mitochondrial activity of A549 cells to stop and this stop was more significant in cold seasons and high-traffic areas.

14.
Environ Sci Pollut Res Int ; 28(40): 55888-55904, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34490568

RESUMO

A large number of studies have been conducted for clarifying toxicological mechanisms of particulate matter (PM) aimed to investigate the physicochemical properties of PM and providing biological endpoints such as inflammation, perturbation of cell cycle, oxidative stress, or DNA damage. However, although several studies have presented some effects, there is still no consensus on the determinants of biological responses. This review attempts to summarize all past research conducted in recent years on the physicochemical properties of environmental PM in different places and the relationship between different PM components and PM potential cytotoxicity on the human lung epithelial cells. Among 447 papers with our initial principles, a total of 50 articles were selected from 1986 to April 2020 based on the chosen criteria for review. According to the results of selected studies, it is obvious that cytotoxicity in human lung epithelial cells is created both directly or indirectly by transition metals (such as Cu, Cr, Fe, Zn), polycyclic aromatic hydrocarbons (PAH), and ions that formed on the surface of particles. In the selected studies, the findings of the correlation analysis indicate that there is a significant relationship between cell viability reduction and secretion of inflammatory mediators. As a result, it seems that the observed biological responses are related to the composition and the physicochemical properties of the PMs. Therefore, the physicochemical properties of PM should be considered when explaining PM cytotoxicity, and long-term research data will lead to improved strategies to reduce air pollution.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Oligoelementos , Poluentes Atmosféricos/análise , Células Epiteliais , Humanos , Pulmão , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Oligoelementos/farmacologia
15.
J Environ Health Sci Eng ; 19(1): 151-163, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34150226

RESUMO

Air pollution associated with particulate matters results in different types of disease including allergy, lung destruction, heart failure, and related problems. This study has been designed and performed to examine the concentration of PM2.5-bound heavy metals, risk assessment, possible sources and effect of meteorological parameters on 17 sites of the air of the most industrial city of Iran (Karaj) in 2018-19. For this purpose, four samples were taken from every point of Karaj air over one year using a pump (Leland Legacy (SKC)) with flow rate of 3 L/min on PTFE filter for 24 h. Overall, 68 samples of PM2.5-bound heavy metals were collected. Note that during the sampling, atmospheric parameters including temperature, pressure, humidity, and wind speed were regularly recorded using PHB318 portable device. In examining the chemical composition of these particles, the concentration of metals (Al-Zn- Ar-Cd-Cr-Cu-Fe-Hg-Mn-Ni-Pb) was determined after digestion of the collected samples and through injection into ICP-OEC device. The results indicated that the mean annual concentration of PM2.5 particles range from 21.84 to 72.75 µg/m3. The mean concentration of heavy metals lied within the range of 25.63 to 336.27 ng/m3. Among heavy metals, the maximum concentration belonged to aluminum (277.95 ng/m3) and iron (336.27 ng/m3), which are known as elements with a ground source (sources such as car fuels, exhaust gases, decorative materials, batteries, indoor smoking, the paint used for painting walls, erosion and corrosion of rubber of cars). Meanwhile, there was a positive relationship between heavy metals and temperature(r: 0.418, p < 0.019), pressure (r: 0.184, p < 0.0.402), as well as wind speed (r: 0.38, p < 0.017), while an inverse relationship was observed with relative humidity (r: -0.219, p < 0.018). The ecological risk of the metals calculated was very notable, with the maximum environmental risk being related to cadmium in children (6.61) and manganese in adults (0.82). The largest HQ in children and adults was associated with Cr. Finally, ILCR values for cadmium in both children (1.19 E-04) and adult (4.81 E-04) groups indicated high risk of developing cancer in humans.

16.
Environ Sci Pollut Res Int ; 28(24): 30452-30458, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33890223

RESUMO

Cigarette butt (CB) is a crucial litter in urban communities because it may contain various toxicants. Due to serious limitations on incinerating or landfilling CB, recycling of this hazardous waste is essential. The objective of this study was to investigate the most important challenges in CB collection and recycling. To this end, a search was done on Scopus, PubMed, and Web of Science by defining a search protocol and identifying appropriate keywords. At the end of the screening process, 52 appropriate papers were selected. In this review, all methods for the CB recycling were considered. This review showed that nine categorizations of different products have been produced from the recycling of CBs, but three important challenges were identified for the recycling of this hazardous waste. It should be noted that finding solutions to these challenges may be helpful in better management of CB as a toxic litter.


Assuntos
Produtos do Tabaco , Gerenciamento de Resíduos , Substâncias Perigosas , Resíduos Perigosos/análise , Reciclagem , Fumar
17.
Ecotoxicol Environ Saf ; 212: 111986, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540338

RESUMO

Population exposure to environmental contaminants can be precisely observed through human biomonitoring studies. The present study aimed to systematically review all the biomonitoring studies conducted in Iran on some selected carcinogen environmental pollutants. In this systematic review study, 11 carcinogen agents were selected including arsenic, cadmium, chromium, nickel, lindane, benzene, trichloroethylene (TCE), pentachlorophenol (PCP), radon-222, radium-224, - 226, - 228, and tobacco smoke. The Web of Science, PubMed, and Scopus databases were searched for peer-reviewed articles published in English. After several screening steps, data were extracted from the studies. Meta-analyses (a random-effect model using the DerSimonian-Laired method) were performed only for the biomarkers with more than three eligible articles, including cadmium in blood and breast milk, and arsenic in breast milk. Methodological quality of the studies was assessed using the Newcastle-Ottawa Quality Assessment Scale adapted for cross-sectional studies. Of the 610 articles found in the database search, 30 studies were eligible for qualitative review, and 13 were included in the meta-analysis (cadmium in blood (n = 3), cadmium in breast milk (n = 6), and arsenic in breast milk (n = 4)). The overall pooled average concentrations (95% CI) of cadmium in blood, cadmium in breast milk, and arsenic in breast milk were 0.11 (95% CI: 0.08, 0.14), 5.38 (95% CI: 3.60, 6.96), and 1.42 (95% CI: 1.02, 1.81) µg/L, respectively. These values were compared with the biomarker concentrations in other countries and health-based guideline values. This study showed that there is a need for comprehensive action plans to reduce the exposure of general population to these environmental contaminants.


Assuntos
Monitoramento Biológico , Poluentes Ambientais/análise , Arsênio/análise , Cádmio/análise , Cromo/análise , Estudos Transversais , Exposição Ambiental/análise , Poluição Ambiental/análise , Feminino , Humanos , Irã (Geográfico) , Leite Humano/química , Níquel/análise
18.
Environ Sci Pollut Res Int ; 28(13): 16434-16446, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387314

RESUMO

Like other dangerous pollutants in the air, asbestos has negative and adverse effects on human and animal health. The present study is designed to determine the concentration of asbestos in the air of the most industrial city of Iran (Karaj) in 2018-2019. For this purpose, 4 samples were taken from different areas of the air of Karaj during a year with an SKC pump and flow of 6 L/min for 8 h and in 45 days, and a total of 68 samples of asbestos fibers were collected. Then, the samples were analyzed by phase-contrast microscope (PCM) and scanning electron microscopy (SEM). Eventually, the health effects of asbestos fibers were evaluated by the IRIS EPA method. The average concentration of asbestos fibers was 1.84 f/L PCM and 18.16 f/L SEM. Also, the results of statistical correlation analysis indicated that asbestos fibers are positively correlated with wind speed but negatively correlated with the other three parameters (temperature, relative humidity, and pressure). On the other hand, the average annual risk of asbestos fiber in the ambient air of Karaj for all samples was in the range of 4.32 × 10-6 to 1.81 × 10-4 which in some places had more danger than the recommended risk range. According to the EPA guidelines, carcinogenicity acceptable levels are in the range of 10-4 and 10-6. Values higher than 10-4 have more carcinogenic risk and values lower than 10-6 have a lower carcinogenic risk.


Assuntos
Poluentes Ocupacionais do Ar , Amianto , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Amianto/análise , Cidades , Monitoramento Ambiental , Humanos , Irã (Geográfico) , Exposição Ocupacional/análise , Medição de Risco , Estações do Ano
19.
Chemosphere ; 270: 129382, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33418228

RESUMO

It is widely believed that an increasing trend in the production and consumption of vegetables has led to a dramatic rise in the use of pesticides potentially threatening the health of consumers around the world. This systematic study along with meta-analysis has mainly centered on the evaluation of the quantity of three well-known pesticides namely, Malathion (MLT), Diazinon (DZN) and Chlorpyrifos (CPF) in vegetables. In this regard, a comprehensive literature search has been performed over the last decade (January 1, 2011 to June 21, 2020) within the scientific databases including PubMed, Web of Science, and Scopus. Of 1239 articles identified through the database screening, 22 plus 37 data report were retained and included in the meta-analysis phase. Additionally, the probabilistic human health risks for the consumers due to the intake of CPF, DZN and MLT from eating vegetables were estimated by the Monte Carlo Simulated (MCS) method. According to the findings, the maximum quantities of MLT, DZN and CPF in the vegetables were observed in Pakistan (222 µg/kg, 95%CI = 214.94-229.08), Thailand (245.00, 95% CI = 235.2-254.8) and South Korea (440 µg/kg, 95% CI = 437.19-442.81), while the lowest concentration levels were reported in China (1.7 µg/kg, 95% CI = 1.56-1.84), Poland (0.57, 95% CI = 0.46-0.68) and Poland (5.78 µg/kg, 95% CI = 4.40-7.12), respectively. The results of the Egger's and the Begg's tests revealed that no bias with regard to the potential publication was observed. Finally, non-carcinogenic risk assessment results demonstrated that the exposure to the studied pesticides thorough vegetables consumption could not threaten the health of consumers.


Assuntos
Clorpirifos , Inseticidas , China , Clorpirifos/toxicidade , Diazinon/toxicidade , Humanos , Inseticidas/análise , Inseticidas/toxicidade , Malation , Paquistão , Polônia , República da Coreia , Medição de Risco , Tailândia , Verduras
20.
Environ Geochem Health ; 43(5): 1983-2006, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33216310

RESUMO

The present study evaluated the concentrations, spatial distribution, seasonal variations, potential sources, and risk assessment of organic/inorganic pollutants in ambient air of Tehran city. Totally, 180 air samples were taken from 9 sampling stations from March 2018 to March 2019 and were analyzed to determine the concentrations of organic pollutants (BTEX compounds and PM2.5-bound PAHs) plus inorganic pollutants (PM2.5-bound metals and asbestos fibers). The results revealed that the mean concentrations of ∑ PAHs, BTEX, ∑ heavy metals, and asbestos fibers were 5.34 ng/m3, 60.55 µg/m3, 8585.12 ng/m3, and 4.13 fiber/ml in the cold season, respectively, and 3.88 ng/m3, 33.86 µg/m3, 5682.61 ng/m3, and 3.21 fiber/ml in the warm season, respectively. Source apportionment of emission of the air pollutants showed that PAHs are emitted from diesel vehicles and industrial activities. BTEX and asbestos are also released mainly by vehicles. The results of the inhalation-based risk assessment indicated that the carcinogenic risk of PAHs, BTEX, and asbestos exceeded the recommended limit by The US environmental protection agency (US EPA) and WHO (1 × 10-4). The risk of carcinogenesis of heavy metal of lead and chromium also exceeded the recommended limit. Thus, proper management strategies are required to control the concentration of these pollutants in Tehran's ambient air in order to maintain the health of Tehran's citizens.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Administração por Inalação , Poluentes Atmosféricos/toxicidade , Amianto/análise , Carcinógenos/análise , Carcinógenos/toxicidade , Cidades , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Humanos , Irã (Geográfico) , Metais Pesados/análise , Metais Pesados/toxicidade , Compostos Orgânicos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Estações do Ano , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA